The Fournal of Tropical बivedicine.

OZIGARAL COMMONICETIONS.
Paet
Tha Classification of Mogquitoon By F. V. Theobald, M.A., F.E.S. 229

Notes on Casiss of "Sleeping Sickness" occurring in the Uganda Protectorato. By J. Hoxard Cook, M.S., M.B.Loud.,F.R.C.S. Eug. with preliminary note by Paterce Manson, C.M.G., r.ß.S., LL.D. ..

A Cese of Multiple Absecsess of the Liver. By W. E. pr そ̌ozte, M.B.Lond. 810
Bath as a Hoalth Resort for Tropical Pationte. By Crables Brag, M.B., C.M.Edin. .841
EDITORIAL
The Official Restraint places upon
Medical Communicatiols from
Officers in the Public Services.. 243

Press
Nab-venereal Buboes (Pestin Milinory) 24

In order to meet the constant enquiry for addresses of respcotable firms catoring for the varions requiremencs so difficult to obtain abroad, we give a list of namos and addressez which we trust will be foand useful to our numerous correspghdente and aubsoribere.

Original Communications.

THE CLASSIFICATION OF MOSQUITOES.*

 By F. V. Theobald, M.A., F.E.S.The mosquitoes, gnats, or Culicida were originally all contained in four genera-Culex and Anopheles, AJdis and Corethra. Of these even now there are only two groups referred to in medical journals (C'ulex and Anopheles). The genus Culex has been a. sort of harbour of refuge for all Culicida except Anopheles and the large Megarhinus and EEdes, and contains many forms quite as diverse from one another as Anopheles are from Culer: some even more so. It is thus very important from a practical point of view in connection with the malarial question to sift and sort out and to arrange these various so-called Culex, many of which are generically quite distinct from the typical Culex, such as our European C. pipiens of Linnxus and the tropical and subtropical C. fatigans of Wiedemann.

If there are sufficient differences between these old Culices to be of generic importance scientifically, there may be and probably are very important internal structural and physiological deviations.

At prese.. all the blame of malaria-carrying is placed on nembers of the genus Anopheles. It has been siid more than once that Culer does not do so. What Culex have been experimented with? C. fatiganx, Wiedemann; C. annulatuk, Meigen; C. pipiens, L. ; C. penicillarix, Rond; C. pulchritarsis, Rond; C. verans, Meig.; C. nenornsus, Meig.; C. a'bopuncta'us, Rond; C. spathipalpis, Rond; C. hortensis, Fic.; Teniorhynchus Richardii, Fic.; Stegomyia fasciata, Fab., and Kdes; all these are true Cules. But many species that have been considered as such I find are very different. These I have raised to distinct geners, and from what we

[^0]know of some of these new gearra they have very different life-histories to Culex proper. Before we can place all the blame on Anopheleg we must see if any of these new groups can serve a similar obnoxious and posterior cross-veins. But too much reliance rôle. Hence today I am going to try and point out the characters by which the old and the new genera of the Cuicider can be distinguishud.
In iormulating the new geners, and in, to some extent, re-modelling the old, I have made most uso of the scale structure. The palpi and ungues which have been used as generic characters by Arribalzaga, have had to be discarded. Not until I had examined some thousands of specimens, embracing three handred odd species from different parts of the world, did I decide upon any general grouping of these pests, but after due consideration I found the scale structure was the only one upon which I could form a satisfactory division of these insects; other charso ters, such as palpi, ungues, \&c., being seen to be of specific but not of generic value.

It is therefore necessary to explain the general structure of a typical mosquito and the scales which cover it, and which give the creatures their often gorgeous colours.

The mosquito, like any other hexapod, can be divided into three main parts-(1) the head, (2) the thorax, and (3) the abdomen.
(1) The head bears on its lateral halves a pair of compound eyes, reniform in shape, a pair of jointed antenno, pilose in the female, plumose in the male, these are not subject to much variation, but afew very important modifications appear upon which two new genera have been formed (Deinocerites, Theo., and Brachiusoma, Theo.) Of the mouth parts I need only speak of the palpi, as they vary tremendoasly. In the female they may be long (Megarhinus and dnophehes), or short (Culex, Edes, Stegomyia, de.). In the male also they may be either long (Culex, Anophelex, (ce.) or short (ERdes, Uranotamia, Wyeoryia, dec.). The numbers of joints vary from two in Edes to four in Anopheles, or five in Megarhinus. These joints are generally difficult

Plate 1.

Basal lobes of Q

Probe
Polpi

Vertex
Eyes

Nape

Ungues

to see in museum specimens. There are also constrictions towards the base of the palpi which have been erroneously taken for joints. Too much importance should not be attributed to joints in palpi, as they are liable to cause grave errors, being covered with scales which hide the segmentation. With regard to the thorax we find all three divisions present, but the main area is the mesothorax, the prothorax being reduced to a pair of lobes, and the metathorax is very small and nearly always nude. Between the metar and meso-thorax comes a plate, the scutellum, which is usually trilobed (Culer, Stegomyia, dec.), but may be simple (Anopheles). The thorax bears a pair of wings and the six jointed legs attached to the lower lateral surfaces, the pleure.

The wings have the veins and the whole border covered with scales, which are of generic importance, while the venation is also of great use in classification. On the wing field are six longitudinal veins. There is one surrounding the border of the wing called the costa, the others are spoken of as the first, second, third, and so on, longitudinal veins; the second and fourth longtudinal veins are forked apically, the forks forming respectively the so-called first submarginal cell and the second posterior cell. In some genera the "fork-cells" are very small (Megarhinus, Uranotania), in others long (Culex and Anopheles). Between the long veins we find transverse or cross-veins; those of special classificatory value I find to be the supernumerary; middle, and posterior cross-veins. But too much reliance must not be placed on them as their is some variation in their relative positions even in the same species.

Of the legs I need say but little. The joints are known as the coxa (basal), trochanter, femora, tibia, and tarsi; the latter being five in number, the First being often spoken of as the metartarsus. The relative length of some of these joints may serve as a guide to separate two closely related species. The femora are swollen in some genera (Uranotcenia and Anopheles). The ungues or claws also offer
specific distinctions; in the female they are always equal, usually simple, but they may be uniserrated; in the male, the fore and the middle are always unequal, both may be uniserrated, and the larger one bi- or even tri-serrated; in a few they are simple, the posterior pair are always equal and simple, ard usually small. I can detect no variation in these in any one species.

The abriomen presents no points of value save the genitalia of the male. The latter differs in most species, and in some cases are peculiarly modified. The so-called hypopygium consists of a pair of basal lobes and two claspers, which vary in form and arrangement.

Such briefly are the chief extemal structures of a mosquito that are of systematic value:

Scales.-Head, palpi, part of the thorax, abdomen, legs, and wings are covered more or less completely with scales. These scales may assume very various forms (Plate 3, figs. a to k), but they may be reduced to about six well-marked types on the body and head of the mosquito.

These I have called by the following names:(1) Narrow curved scalcs (e); (2) spindle-shaped curved scales (f); (3) upright forked scales (h and i); (4) spade-shaped scales or broad flat scales (a); (5) long twisted scales (j) ; (6) narrow hair-like curved scales (d).

Really all the scaly covering to the head, thorax, abdomen, palpi, and legs can be reduced to one of these six types. On the wings we get other modifcations; the scales may be (1) linear and narrow; (2) elongated oval; (3) lanceolate ; (4) pyriform (k); (5) spatulate; (6) or asymmetrically broadened (b and c).

The arrangement of the scales on the head in a typical Culex (Plate 3, fig. 2) is as follows: Narrow curved scales all over the occiput; upright forked ones, especially thick towards the nape, and flat ones on each side of the head. The thorax is more or less densely clothed with scales; in one type they are all narrow curved scales or hair-like or spindleshaped scales on both the mesothorax and the

Puatg IV.

$$
\begin{aligned}
& \text { ッa, }
\end{aligned}
$$

scutellum; the metanotum is always nude in typical ('ules and Amphielen (ride Plate 5). The legs are also completely covered with scales, which usually lie close together and overiap like the tiles on the roof of a house; they are normally small and spatulate in form and closely applied to the surface. but they may become elongated and erectile. or form dense tufts, giving the legs a thickened
 paddle-like patches (Sulethers).
Tho abdomen in most C'nlicidice, save dnoplieles, is covered with flat spatulate scales which form a complete covering. These offer little of systematic value, but in some genera the seales of the abdomen become rather elongated and erectile, and give the body a rough appearance ($M u c i / u s$), and in others centain parts may be densely scaled with long natrow seales forming a kind of caudal fan (Me!(rurhinux, de.).
On the wings we find scales of quite different form to those of the body. Each vein has two, three, four or more series of seales attached, which vary in form in the different genera. These scales are usually spoken of as (1) median vein scales, (2) lateral vein scales. In c'ule, the former are usually moderately broad, symmetrical. short or elongated seales ending convexly or flat, the lateral vein-scales in ('uler are thin, linear, straight, or bent squama (Plate 4, fig. 7).
The wing fringe is composed of three or four sets of scales, the fringe-seales being long. of three sizes, and lanceolate, and along the border of the wing a third or fourth serics of smaller scales, the borderscales of systematic value.

The genera first formed for c'ulicider were ('ule. and Anיplietes, Kitex and Corethra. The genus ' 'ultre was instituted by Linneus in 1790, and was apparently founded on C'ulex pipiens; Anupheles by Meigen in 1818, and also Eiles and Curethra.
In 1897 Robincau Desvoidy, in his "Essai sur les Culicides." instituted three new geuera, isegurrhinux. Peurophura, and Salietlies. Low, in 1844 , placed Morlionyre as a distinct genus.
Not until 1891 was any fresh tabulation of the family attempted. In that year Arribalzaga separated from Cules the genera Janthinosoma, Tomiorhynchus, Ochlerotatus, and Heteronycha; and from Eilrs the genus C'ranifienia. Another genus related to Edes was formed by Williston. Hamoyu,
Of these genera I have retained Culex, Amopheles, Megarhinus, Salethes, Psorophora, Janthinosoma,

Taniorhynchus, Uranotenia, Hamagogus, Wides, Corethra, and Mochlonyx. But the characters of the gencra have been somewhat modified.

The characters of the genera were mainly based on the proboscis and palpi, but into this old classification 1 need not now enter.
To these old gencra I now add the following:C'ycloleppiteron, Turorhynchites, Mucidur, Eretmapodites, Stegomyia, Armigeres, Deinocerites, P'anoplitex, F'yemmyin, Edeomyia, Trichoprosopon, and Brachiosoma.
The characters of these and the old genera are as follows:-

Section A.-Proboscis formed for suction; metanotum nude (Plate 5, fig. 1).
(a) Palpi long in the male.

Genus 1. Anoulheles (Meigen).-Palpi long in both sexes, usually clubbed in the male. The head clothed almost entirely with large upright forked scales, a few narrow curved ones, and flat lateral ones (Plate 3. fig. 5). The thorax has usually narrow hair-like curred scales, but in some species they are spindle-shaped, the scutellum round or slightly trilobed with narrow curved scales, the abdomen usually nude of scales, but they may be present in the form of narrow spindle-shaped ones. The wing scales are rather long and lanceolate or nai rowly spindle-shaped (Plate 4, fig. 1). The larva have no respiratory tube and lie horizontally in the water.

Genus 2. Cyclolepptcron (Theobald).-Closely related to Anophieles and separated from it by the presence of deep inflated wing scales in patches, forming more or less black spots (Plate 4, fig. 2).
(b) Palpi loug in male, shorter in female; first submarginal cell very small; proboscis bent (Megarhinina). Palpi five-jointed in female (Meyarhinux); three-jointed in female (Toxorhynchites).
Gcnus 3. Megarhinus (Rob. Desvoidy).-Scales of the head are all arranged like tiles on a roof, flat (Plate 3, fig. 4); thorax with spindle-shaped and broad scales over the wings; scutellum with broad scales; caudal tuft present on last few apical abdominal segments. Larvx large with respiratory tube.

Genus 4. Toxorhynchites (Theobald).-Venation and scale structure like the above, but the female palpi three-jointed and short.
(c) Palpi short in the female, long in the male; first fork-cell long (Culicina). In this group the
cross-veins and wing scales form the chief distinctive characters.
(d) Legs morc or less densely scaled.

Gcnus 5. Stajelhes (Rob. Desroidy).-Nid crossvein nearer apex of wing than supernumerary; posterior cross-vein nearer apex than midde. Legs with dense paddle-like areas of long scales.

Genus 6. Janthinosoma (Arribalzaga)--Crossveins as in Culex; hind legs densely scaly; the scales on the thorax broadly spindle-shaped

Genus 7. Paorophora (Rob. Desvoidy).-Posterior cross-vein nearer the base of wing than the mid cross-vein; wings with thin scales; legs densely scaled. Thorax with lines of small spindle-shaped scales.

Genus 8. Mucidus (Theobald).-Posterior crossvein nearer apex of wing than mid.; wings with laige pyiiorm and large spatulate scales, mostly parti-coloured (Plate 4, fig. 8). Thorax and head with long twisted upright scales giving mouldy appearance (Plate $3, j$).

Genus 9. Eretmapodites (Thzobald).-Posterior cross-vein nearer base of wing thrn mid cross-vein; wings with rather long thick scales (Plate 4, fig. 4); legs in male with dense apical paddle. Scales of the head flat and also scutellum.
(f) Legs uniformly scaled with flat scales.

Genus 10. Stegomigia (Theobald).-Head and scutellum with flat scajes; head with upright forked ones as well (Plate 3, fig. 1). Wing scales small, both spatulate and linear (Plate 4, fig. 5); fork-cells rather small. Palpi of male with more or less tufts of hairs. Larve wilh short respiratory siphon; eggs often laid separately.

Genus 11. Armigeres (Theobald).-Like above, but the male palpi rather long, thin and nude. Large species. Scales on head narrow and curved, upright forked ones, and broad flat lateral ones. Mcad and scutellum with narrow curved scales.
C.cnus $12 . \quad C u 7 e s$ (Linn.)-Wing scales small, lat ral ones linear. Head and scutellum with scales as in Plate 3, fig. 2.

Gcnus 13. Panoplites (Theobald).-Wing scales mostly broad and asymmetrical (Plate 4, fig. 6).

Genus 14. Tuniorhynchus (Arribalzaga).-Wing scales dense, mostly elongate, oval, or broadly lanceolate.

Genus 15. Deinocerites (Theobald).-Second antennal joint very long, nude. In all the other Culicina it is rather small.

Genus 16. Brarhioxoma (Theobald).-Second antennal joint long; the greater part of antennse densoly scaly.
(f) Palpi short in both sexes (Kdeomyina).
(g) Palpi two- or three-jointed, non-metallic.

Genus 17. Edeomyia (Theobald).-Wing scales large and flat (Plate 3, c); fork-cells normal.

Genus 18. Ades (Meigen).-Wing seales small, lincar like Cuter; fork-cellis normal.
(h) Palpi fivejointed.

Gcnus 19. Hamugogus (Williston).-Metallic; fork-cells normal.
(i) Palpi two-jointed.

Genus 20. Oranotania (Arribalzaga).-Fork-cells very small; metallic; flat scales in spots on thorax.

Section B.-Proboscis formed for piercing; Motanotum with clietre; palpi small.
Genus 21. IVcamyia (Theobald).-Proboscis moderately or very long.
Section C.-Proboscis formed for piercing; metanotum with chrtx and scales.
Genus 22. Trichuprosopon (Theobald).-Malpi short in female; long in male.
Section D.-Proboscis short; not formed for piercing (Corethrina).
Genus 23. Corethra (Meigen).-Metatarsus longer than first tarsal joint.

Genus 24. Mochlonye (Low).-Metatarsus shortar than first tarsal.

DESCRIPTION OF PLATES.

PLate I.

Typical Pabts or Miosquito.
plate II.
Wiva or Culex.
c, costal vein ; s.c, sub-costal ; 1st to $6 t h$, firit to sixth longitudinal veins; a, a^{\prime}, and $a^{\prime \prime}$, incrassations (a^{\prime} called by susten the $6\left(\%\right.$ vein, $a^{\prime \prime}$ tho $\delta\left(h^{\prime}\right) ; y$, supernumerary crose-vein; $z_{\text {, }}$ mid-cross vein : p, posterior cross-vein ; A, costal cell ; B, subcostal cell; C, marginal cell; D, first sub-marginal cell ; E, second sub-marginal cell; F., first posterior coll: G., second postcrior cell; J, third posterior cell; K, anal cell; H , first hasal cell ; I, second basal cell; L, auxiliary; M, spurious cell.

PLATE III.

Hilad and Scutelear Onnamentation me Culicide.
(1) Head, scutellum, and lateral view of head scalas in Stegomyia (Thea).
(2) Head, \&C., in Culex (Linn.).
(3) n Edcs (Meigen).
(4) " Migarhinus (R. Desv.
(6) " Clypeus of a' Culcx, b' Stegomyia (Theo.) and c^{\prime} Trichoprosopon (Theo.).
a to k, Forms of Soales.
(a) Spade-shaped zcale.
(b) Broad asymmetrical winged scale of Panoplites (Tbeo.).
(c) The samo of Addcomyia (Theo.)
(d) Curved hair-like scule.
(c) Narrow curved scale.
(f) Spindle-shaped scalo
(g) Small spindle-sbapod scale.
(h) and (i) Upright forked scale.
(j) Upright twisted scale.
(k) Inflated parti-coloured acale.

PLATE IV.

Forms of Wing Scales.
(1) Anopheles (Meigen) vein and fringe scalas \rightarrow OK
(2) Cycloleppteron (Theolald) veio scales. Anopheles (Anophelet

(4) Eretmapoditce (Theobald) vein scales, \rightarrow OK
(5) Slegonyia (Theobaid) vein scales. \rightarrow OK Mansonia (Mansonia)
(6) Pawplites (Theobald) vein scales, \Rightarrow
(7) Culcx (Linneus) vein and fringe soalos.
(8) Mucidus (Theobald) vein scales.
(9) Psorophora (Rob. Desvoidy) vein and fringe acnles.

PLATE V.
Thpes of Metarotic.
(1) Culex.
(2) Wyeomyia.
(3) Trichoprosopon. \rightarrow OK

[^0]: - A lecture given at the London School of Tropical Medicine.

